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Relationship between the magnitude of singular value
and nonlinear stability *
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Abstract The relationship between the magnitude of singular value and nonlinear stability or instability of the
basic flow is investigated . The results show that there is a good corresponding relationship between them. The magnitude
of singular value decreases as the stability (or instability) of the basic flow increases (or decreases) . In the stable case,

the magnitude of the maximum singular value is much smaller than in the unstable case.
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The motions in atmosphere or oceans are genuinely nonlinear. However, on some occasions, it is
plausible and effective to simplify the nonlinear processes by linearizing them. Therefore, within a
range of valid linearization approximation, singular values and singular vectors are widely utilized in

(1]

theoretical research and practical implementations, such as the study of predictability - and ensemble

forecast'?) .

The magnitude of the maximum singular value represents the possibly fastest growing rate of the
initial perturbations over a finite time interval, called the optimization time interval, with a given
norm. Its corresponding singular vectors are the fastest growing initial perturbations. Clearly the con-
cepts of singular value and singular vector are closely related to the linear stability and instability
problems over a finite time interval®’. On the other hand, there are quite a few definitions for nonlin-
ear stabilitym , one of which is as follows. If the growth rates of all the initial perturbations with a
given norm cannot exceed a constant, no matter how long they evolve, the basic state is called nonlin-

early stable!*~ %) . This definition is widely utilized and the related stability problem is well-studied.

From the definitions of singular value and nonlinear stability, there should exist some relation-
ship between them. In general, nonlinear processes are comparatively complicated. It is difficult to
establish the criteria for nonlinear stability. However, it is relatively simple to find out singular val-
ues, at least by numerical approaches. If the relationship between the nonlinear stability and the sin-
gular values is clarified, some useful information about the nonlinear stability can be obtained from the

singular values. In this paper, with the nonlinear stability criteria for some particular cases'>'%), the
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relationship between the singular value and the nonlinear stability is investigated. Using the two-di-
mensional ba:otropic quasigeostrophic model as an example, we examine the changes of the magni-
tudes of the maximum singular values versus the increasing( decreasing) nonlinear stability of the basic
flows, with respect to energy norm. From the results of numerical experiments, there is significant
difference in the magnitudes of the maximum singular values between the stable flows and unstable
ones. Therefore, the magnitudes of singular values represent some characteristics of nonlinear stability
and instability .

1 The model
The two-dimensional barotropic quasigeostrophic model is

Fras.p) =0, (1)

where ¢ is the streamfunction and 3( ¢, P) the two-dimension Jacobian. The potential vorticity is de-

fined by
P=V%5—F¢+f+‘I§hs, (2)

where F~! = }‘Lj is the square of Rossby radius of deformation, f the Coriolis parameter, and A, the

topography. The flows are periodic in the west-east direction, and the north-south boundary is rigid.
That is,

d
a_¢ = 0! (3)
X ly=0,2v
.. d [ 3¢ )
and the condition 5~ - dx = 0 should also be satisfied.
dtdo Iy |, 02y

1[7]

Linearizing Eqgs. (1) and (2), we can obtain its tangent linear model'’" . From the tangent lin-

ear model, its corresponding adjoint model can be obtained, then the singular values can be comput-
[8,9]
ed .

2 Numerical results

By the analysis of the numerical results, we will discuss the relationship between the magnitude
of singular value and nonlinear stability with and without the topography being considered, with re-

spect to energy norm.
2.1 Without the consideration of topography

We first study the case in which the topography is not considered. The basic flow is assumed to
be! ]

g(y) = <,bocos(g-!"Z + a) ’ (4)
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where ¢(y) is the streamfunction of the basic flow, with ¢, being the amplitudes of ¢ (y), [ the
wavenumber, Y the half of the north-south width, and a the displacement.

In this case, the criterion for nonlinear stability[s’(”m is

l <1. (5)

Formula(5) shows that the stability of the basic flow is significantly effected by the wavenumber /.
The stability decreases (or increases) as [ becomes larger (or smaller). Furthermore, according to
the study on validity of tangent linear model!™®!, the valid period for both stable and unstable basic
flows under this condition can be as long as 2 days. Within a range of valid linearization approxima-
tion, some numerical experiments have been made to calculate the singular values. Figs.1 and 2 show
how the magnitudes of the maximum singular values change with the basic flows of different wavenum-
ber [, over an optimal time interval of 24, 30, 36, 42, and 48 hours.
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Fig. 1 The maximum singular values vs. the Fig. 2 The maximum singular values vs. the
wavenumber of the nonlinearly stable basic flow, over wavenumber of the nonlinearly unstable basic flow.
a time interval of 48 h (solid), 42 h (dashed), 36 h The time intervals are the same as those in Fig. 1.

(dot), 30 h (dash-dot) , 24 h ( dash-dot-dot) .

To study the difference in singular values between the stable and unstable basic flows, the aver-
ages of the maximum singular values for 20 stable cases and 20 unstable ones are indicated in Table
1.

Table 1 Averaged maximum singular values for stable and unstable cases”

Time interval/h

Type
24 30 36 42 48
Stable 1.118 1.155 1.190 1.228 1.265
Unstable 2.084 2.484 2.946 3.472 4.071

* Topography is not considered.

From Figs. 1 and 2 and Table 1, the following conclusions can be drawn:

(i) The magnitudes of the maximum singular values in the case of stable basic flow are much

smaller than those in the case of unstable one.
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(ii) The longer the time interval is, the larger the maximum singular value becomes, and the
more distinguished difference in singular values between the stable and unstable cases is.

(iii) The magnitude of the maximum singular value is significantly influenced by the wavenum-
ber I. It declines rapidly as | becomes smaller, that is, the stability increases.

2.2 With the consideration of topography

We then study the case in which the topography is expressed as

hiy) = ho( }'sin( %l;YX) + }’zcos(%l%) + 1). (6)

The basic flows'®) are chosen as

+A2cos( (;—;)2-% )) )

where the meanings of ¢(y), ¢y, ! and Y are the same as those in Sec. 2.1, h(y) is the topogra-
phy, kg the amplitude of the topography A(y). 7;, ¥,, A, and A, are the coefficients. The defini-
tion of other parameters can be found in Reference[10].

Under this condition, the criterion>%1 for nonlinear stability is

0<(%)2+F—%<(%)2+F. (8)

From Refs. [5], [6] and [10], we know that the stability of the basic flow increases (or decreases)
as the wavenumber ! becomes smaller (or larger) . Considering the validity of tangent linear model!*
which is 2 days under this condition, as in Sec. 2.1, we draw Figs. 3 and 4 to indicate the magni-
tudes of the maximum singular values varying with the basic flows of different wavenumber [, over a

time interval of 24, 30, 36, 42, and 48 hours.

To manifest the difference between the stable basic flows and unstable ones, the averages for 20
stable and 20 unstable cases are presented in Table 2.

From Figs. 3 and 4 and Table 2, similar conclusions can be reached as those in Sec. 2.1.
However, the difference between the stable and unstable cases is not so distinct as that in the above.

Table 2 Averaged maximum singular values for stable and unstable cases "

Time interval/h

Type
24 30 36 42 48
Stable 1.332 1.433 1.539 1.652 1.m
Unstable 1.795 2.062 2.355 2.680 3.028

* Topography is considered.
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Fig. 3 The same as in Fig. 1, but the topography is Fig. 4 The same as in Fig.2, but the topography is

considered . considered .

3 Conclusions and discussions

The magnitudes of singular values are significantly affected by the nonlinear stability and insta-
bility of the basic flows. As the instability increases and time interval prolongs, the magnitude of the
maximum singular value gets larger. The magnitude of the maximum singular value in the unstable
case is much larger than that in the stable case. Furthermore, the difference becomes more distinet
while the time interval is lengthened. This can be explained as follows. If the time interval is short,
the perturbations cannot grow enough to distinguish the difference in the maximum singular values be-
tween unstable basic flows and stable ones.
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